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The inverse-matrix method of analyzing the convergence of the solution of a given 
system of finite-difference equations to the solution of the corresponding system of 
partial-differential equations is discussed and generalized. The convergence properties 
of a time- and space-centered differencing of the diffusion equation are analyzed as 
well as a staggered grid differencing of the Cauchy-Riemann equations. These two 
schemes are significant since they serve as simplified model algorithms for two recently 
developed methods used to calculate nonlinear aerodynamic flows. 

I. INTRODUCTION 

Any practical finite-difference scheme should be convergent, that is, it must 
have the property that as the grid is refined, the solution of the difference equation 
approaches the solution of the differential equation. Proving the convergence of 
a partial-difference scheme is generally a difficult task and one is usuahy satisfied 
with analysis of an appropriate model equation. This is especially true when 
practical boundary conditions are included in the analysis. 

In this paper, convergence is considered from a fundamental point of view; 
the difference algorithm is convergent if the inverse of the matrix representing 
a system of linear-difference equations operates on the vector of local truncation 
errors such that their product approaches zero as the grid is refined. This inverse- 
matrix method of analyzing convergence is discussed and generalized in Section II. 
Previously, the approach has been applied to two-point boundary-value problems 
(see, e.g., [l-3]) and to the discrete analog of Laplace’s equation (see, e.g., [4, 51). 
For initial value problems, the inverse-matrix method is equivalent to the usual 
matrix method of analyzing convergence (see, e.g., [6, 71) if the solution of the 
difference equations can be found by marching in a time-like direction. 

Convergence proofs are provided for two recently developed difference schemes 
that have been successfully used in fluid flow computations but have otherwise 
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not been analyzed. In Sections III and IV, convergence proofs are given for a 
time- and space-centered differencing of the diffusion equation subject to various 
boundary conditions. While this differencing is impractical for simple parabolic 
problems, it has application in the calculation of separated boundary-layer flow [S]. 
In Section V, a convergence proof is given for a staggered grid differencing of the 
Cauchy-Riemann equations. This difference scheme also has application in fluid 
mechanics. A fast direct-solution algorithm has been devised [9] which has recently 
been used in an iterative solution process for the nonlinear equations of subsonic 
and transonic aerodynamics [lo]. 

II. INVERSE-MATRIX DESCRIPTION OF GLOBAL CONVERGENCE 

A system of difference equations which approximates a system of linear partial- 
differential equations can be written in matrix form as 

Au - c = 0, (2.1) 

where u E R” is a real vector with m elements and A is an m x m nonsingular 
matrix. The elements of u consist of the grid function or functions for each point 
in the computation domain, and the vector c E R* contains specified data such 
as initial values, boundary values, and forcing functions. Thus, the difference 
operators take a system of linear partial-differential equations into a system of 
linear algebraic equations. It should be mentioned that in an initial value problem 
the time or time-like direction is also discretized with the appropriate matrix 
entries. 

Let v E Rm denote a vector whose elements consist of the exact solution to the 
system of partial-differential equations for each dependent variable at each grid 
point. Then the vector of local truncation error terms E E Rm is defined by 

Av - c = E, (2.2) 

where e is a function of the grid spacing. If the solution to the partial-differential 
equation is sufficiently differentiable, each element of E can be estimated by a local 
Taylor series expansion. Let h be a representative spacing to which all the grid 
increments are referenced. Then, for a consistent difference scheme [l I], E -+ 0 
as h --+ 0, but the dimension of the real vector space R” becomes arbitrarily large. 

Denote the difference v - u by e and then subtract Eq. (2.1) from Eq. (2.2) to 
obtain 

Ae = E, (2.3) 

where it has been assumed that the difference equations and the differential 
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equations share the same boundary and forcing functions. We can now express 
the error due to discretization as 

e = A-k (2.4) 

In general, round-off error cannot be defined at this stage since the solution 
process or algorithm is not specified. 

A method is said to be convergent if 

e = A-h--t 0, as h-+0. (2.5) 

Although a + 0 as h + 0, the discretization error vector, e, will not approach 
zero if A is sufficiently ill-conditioned. That is, as the grid is refined over a fixed 
domain of space and time, the errors may accumulate (or integrate) faster than 
E decays. As defined by Eq. (2.5), convergence is a global phenomenon, the 
difference solution must collapse upon the differential solution over the entire 
solution space. 

The inverse-matrix method of convergence as expressed by Eq. (2.5) is not 
restricted to special boundary conditions or the use of just one particular class of 
difference formulas. In practice though, an estimate for the norm of A-l can be 
quite difficult. However, if G is an arbitrary nonsingular matrix, the error vectors 
can be transformed by G, that is, GAe = GE, and if we define T = GE, the dis- 
cretization error is given by 

e = (GA)-l 7. G-6) 

Eq. (2.6) is equivalent to Eq. (2.4), but it has the advantage that G may be selected 
to simplify the analysis, that is, the norm of (GA)-l may be easier to estimate than 
the norm of A-l. 

III. CONVERGENCE OF A TIME-PERIODIC DIFFUSION-EQUATION ALGORITHM 

a. Motivation 

The Navier-Stokes equations of fluid mechanics are often simplified by use of 
Prandtl’s boundary-layer assumption when viscous effects are confined to thin 
layers in the fluid [12]. Although the boundary-layer equations are a nonlinear 
parabolic system of partial-differential equations, the simple model equation 

(3.1) 

with specified initial and boundary conditions, can be used to study some of their 
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characteristic features. In particular, for separated flow U(X, t) takes on negative 
values in an embedded region of the field, and a finite-difference analog of Eq. (3.1) 
cannot be marched in time through this region. 

The model Eq. (3.1) and the boundary-layer equations can be solved iteratively 
using combinations of backward and forward difference operators selected for 
au/at according to the sign of u(x, t). As an alternative to changing the difference 
approximation for au/at according to the sign of U, Klineberg and Steger [8] 
found that accurate numerical solutions can be obtained if ut and u,, are both 
approximated by conventional second-order central-difference formulas. This 
difference analog for Eq. (3.1) forms a five-point stencil like the second-order 
Poisson difference operator, and the difference equations are solved simultaneously 
as if they were subject to Dirichlet conditions. However, since no downstream 
boundary condition is actually given, one-sided differencing is used at t = t, and 
U(X, tf) is assumed to be positive. 

The use of central-difference operators in space and time which are employed 
in a manner appropriate to a boundary-value problem might appear to be improper 
for an initial value, parabolic partial-differential equation. Such a scheme must 
be used in conjunction with a simultaneous solution process and the differencing 
does not prevent data at a given time level from influencing an earlier time level. 
Nevertheless, convergence can be proved if the differential solution is sufficiently 
smooth. 

Central difference analogs for parabolic problems have been used previously 
with overspecified Dirichlet conditions. Greenspan [13] found central difference 
solutions to the problem 

Ut +f(& t, & xz> = &xl! 7 O<x<a, o,<t<t,, (3.2a) 

by means of the generalized Newton method, while Ban and Kuerti [14] used the 
same difference operators to obtain solutions to the problem 

(x - t) Ut + u/2 = M2U,, , O<xXl, O,(t<l, (3.2b) 

by successive line overrelaxation. In both problems Dirichlet conditions were 
imposed. Carasso and Parter [15] proved the unconditioned convergence of a 
central-differenced (or leap-frog) approximation to the equation 

4 = (4x) %), + b(x) %! - 44 24 + &, 0, (3.2~) 

with a(x) > 0, and Dirichlet conditions. In another paper, Carasso [16] proved 
the convergence of the mildly nonlinear problem if dx = y At. 

In this and the following section we prove convergence for the centered difference 
analog to the diffusion equation subject to properly specified boundary conditions; 
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however, we restrict our proof to the linear problem with constant coefficients. 
In this section we allow the coefficient of ut to be either a positive or a negative 
constant. Unbounded exact solution growth for a negative coefficient is avoided 
by replacing the usual initial condition with a condition of temporal periodicity. 
In the following section we prove convergence for central differencing subject to 
the usual initial condition, but only a positive coefficient is allowed because our 
algorithm includes a change to a backward implicit differencing at t = tf . 

b. Model Equation 

Consider the diffusion equation 

7)(au/at) = a2upx2, (3.3) 

which holds on the interval 0 < t < t, , 0 < x < xf , and subject to a condition 
of periodicity in time 

u(x, t) = u(x, t + tr). (3.4) 

Periodic boundary conditions are given along x = 0 and x = xf ; 

40, 0 = f(t) = f(t + tA, (3Sa) 

4Xf 7 t) = i?(t) = dt + tr), (3.5b) 

and because the condition of temporal periodicity is imposed, an initial condition 
v(x, 0) cannot be specified. 

A uniform grid of points is superimposed over the x - t domain and labeled 
by xi = j Ax, t” = n At for j = 0, 1, 2 ,..., J, J + 1, and n = 0, 1, 2 ,..., N, where 
J and N are positive integers and t, = N At and xf = (J + 1) Ax. A difference 
approximation centered about (j, n) 

q(u;+l - uy> - y(z&, - 2ujn + uj”+J = 0, j = 1, 2,..., J, n = 1, 2 ,..., N, 

(3.6) 
is used to approximate Eq. (3.3) where y = 2At/(Ax)2. The local truncation error 
estimate of the centered difference approximation to Eq. (3.3) is 

E.~ = o(At2) + O(Ax2), 3 Ax, At ---f 0, (3.7) 

where the definition of l jn used here is consistent with that used, for example, by 
Richtmeyer and Morton [ 11, p. 201. 

The system of difference equations together with their boundary and periodicity 
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conditions can be written as Eq. (2.1). Although the method of ordering the 
elements of II is arbitrary, we use the following “natural ordering” [17]. 

u= , where II” = 

The J-component subvector un has as elements the mesh function uin taken from 
left to right across a row on points with the index n fixed. Elements of the coefficient 
matrix A and the vector c of constants are ordered in a way which is consistent 
with the definition of u. With this ordering, the matrix A is block circulaat [18, 191 
because of the imposed periodicity, that is, A has the form 

where T = y trid,( - 1,2, -l), T and 1 are order J, and A is order N x J. 
According to Eq. (2.5), to establish convergence for the difference algorithm 

we need bounds on the norm of e = 2dtA-la where 2dt appears because Eq. (3.6) 
has been scaled by this factor. Observe that A is normal, AtA = AAt, and thus 
so is A-l. Hence the I, or Euclidean induced norm of A-l equals its spectral radius 
(see, for example, [19, 201): 

II A-l [I2 = p(A-l) = [min I ujn II-l, 

where aj” denotes the distinct eigenvalues of A. Consequently, 

(3.9) 

II e II2 < 2&W1) II e /I2 , (3.10) 

and an upper bound for /I e /I2 is readily obtained once p(A-l) is determined. 
An explicit formula for the eigenvalues of A can be found by using a sequence 

of unitary transforms to bring A into a direct sum of circulant block matrices of 
order J. The matrix T is symmetric so there exists an orthogonal matrix U such 
that [20, 211 

lJtTU = D, (3.11) 
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where D is a diagonal matrix whose entries are the eigenvalues of T: 

Uj = 4y sin2~~/(2(J + l))], j = 1, 2 ,..., J. (3.12) 

Let Y be the N x N block matrix u u O 
Y= u@u@*-~@u= I *-I > (3.13) 

O’u 

where @ indicates the direct sum. Then YtAY = B is a matrix with the same 
block structure as A but with blocks T replaced by D. Finally, there exists a 
permutation matrix P such that PBPt is the J x J block matrix 

PBPt =C,OC,O...OCiO...OC,, (3.14) 

where Cj is an N x N circulant matrix of the form 

(3.15) 

The eigenvalues of any circulant matrix are known (see [18, pp. 242-2431) and 
consequently the eigenvalues of A are given by 

a(#’ = uj + 2i7 sin(2nn/N), j = 1, 2,..., J and n = 1, 2 ,..., N, (3.16) 

where aj is given by Eq. (3.12). 
The spectral radius of A-l is then found using the minimum eigenvalue of 

Eq. (3.16): 

min 1 ujn I = 4y sin2[r/(2(J + l))] 
M 2&7/Xf)2 [l + O(dX2)], Llx-+o. (3.17) 

From Eq. (3.10) it thus follows that 

II e II2 d b/d2 II Q /I2 , (3.18) 

and from the definition of the Euclidean norm 

(3.19) 
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where I E Jmrtx is the maximum local truncation error over the field of grid points. 
Finally, it follows that 

II e II2 < (-4+ ((stf)/(dx 4Y [W@) + Wt2)1, (3.20) 

and if, for example, t = 01 dx, convergence is ensured. The convergence criterion 
specified by Eq. (3.20) is thus quite unrestrictive and is likely conservative. Note 
that convergence is independent of the sign and magnitude of 7). 

As a practical aside, the difference equations (3.6) require simultaneous solution, 
and for v near zero this can be achieved by the usual successive overrelaxation 
procedure. If 7 is a constant of order one, a cyclic reduction in (n) followed by 
successive line overrelaxation with pentadiagonal inversion is very efficient. Fast 
direct solution also appears to be feasible. However, if 7 is a constant, Eq. (3.3) 
is also readily solved by a Crank-Nicolson differencing with any guessed initial 
condition and simply marched until the solution values found over one time 
period are sufficiently close to those obtained over the previous time period. 

The transformations used to find the eigenvalues have frequent application in 
this type of analysis and they are also the basis of a class of fast direct-solution 
procedures; see, for example, [22] or [23]. The permutation matrix P is simply 
one that reorders the vector II from the ordering (11, 21, 31,..., Jl ; 12, 22 ,..., J2;...; 
1N ,..., JN) to the ordering (11, 12, 13 ,..., IN; 21, 22 ,..., 2N;...; Jl,..., JN). The 
blocks of a matrix are diagonalized by the same similarity transform if they 
commute (there are other special cases, see, e.g., [18, pp. 56-591) and Y is such 
a similarity matrix. The columns of U are simply the eigenvectors of T which for 
any constant, symmetric tridiagonal matrix, trid,(u, b, a) are given by 

with 
& = (2/(J + 1))1/2 sin[lj,/(J + l)]. 

The unitary matrix that would diagonalize Cj is comprised of the eigenvectors 
for any circulant matrix; see, for example, Marcus [24] or Bellman [18]. 

IV. CENTRALLY DIFFERENCED DIFFUSION EQUATION WITH INITIAL DATA 

a. Motivation 

In the previous section, we demonstrated that the central or leap-frog differencing 
of the heat equation with a time periodicity condition is convergent and is insensi- 
tive to whether the coefficient q of au/at is positive or negative. In this section we 
consider the validity of this difference operator for an initial value problem where q 
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is assumed to be positive. Because the central-difference approximation of au/at 
spans three points, it is clear that the same difference operator cannot be used 
at every point in the field if only one level of initial data is supplied. If in some 
way data are supplied at t = At, it is well known that explicit (or backward) 
use of the centered-difference operator leads to a divergent solution [l 11. However, 
if the central-differencing scheme is applied at all but the last rows of points and 
if an implicit backward differencing is used at t = t, , then it is shown in this 
section that the solution to this system of difference equations is convergent. Of 
course, the numerical solution must be obtained by some simultaneous solution 
procedure. 

b. Centrally DifSerenced Initial Value Problem 

Consider the diffusion equation 

au/at = K(a’U/aX’), 0 < X < Xf , 0 < t < tf , K > 0, (4.1) 

subject to the initial and boundary conditions u(x, 0) =f(x), ~(0, t) = g&t), and 
u(xf , t) = gf(t). The usual notation for the discrete grid is introduced, and for 
all points 1 < n < N - 1, 1 < j < J, we employ the centered differencing 

.jn+1 - uy-” - y(ujn_, - 2zlin + ui”,3 = 0, ‘)J = 2K dt/(dX”). (4.2) 

For the points n = N, 1 <j < J, Eq. (4.1) is approximated by the second-order- 
accurate implicit backward differencing: 

(9[3Uj” - 4ui”-l + uj”-” - y(& - 2Uj” + ujn,,)] = 0, (4.3) 

where the scaling by & is introduced so that u7-l has a coefficient of unity. 
The system of difference equations in the previously defined natural ordering 

with the assumed boundary and initial conditions generates the N x N block 
matrix 

where Q is the J x J tridiagonal matrix 

(4.4) 

(4.5) Q = trjd C-y, 27, -y), 
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and C = ($)I + ($)Q. From the analysis of the previous section, A is found to be 
orthogonally similar to B; 

B = PY-lAYPt, (4.6) 
where 

B=B,OB,O...OBjO...B,, (4.7) 

and 

Bj = 

-“; . 1 0 . . . . . . . . . . . . 
0 -1 Oj 1 

$ -1 b 

(4.8) 

Each block matrix B, is an N x N matrix with & = 2 + crJ4, and oj are the 
eigenvalues of Q given by Eq. (3.12). 

To prove convergence we shall find bounds on each element of B;l. The matrix 
Bj is first split into a constant tridiagonal matrix and a perturbation matrix 

where 

and 

Bj = Tj + GN$, 

Tj = tr-d (-1, Oj, l), 

(4.9 

(4.10) 

rlt = w, o,..., 0, a, 0, w - 41 
= (2) CL, + (P)(l - “i) r,“, (4.11) 

with the unit vectors <N-z , qN defined to be columns N - 2 and N of the N x N 
identity matrix I. The inverse of Bj can be expressed in terms of T:' by using the 
Sherman-Morrison formula (see, e.g., [25, p. 1221): 

with 

By1 = T>:’ - ,&T;‘CN>KC~-;_,T;~~ + 3U - ~,)(~,%31/4, (4.12) 

fl = [l + ($) TN-2.N f (6>(1 - uj> TNN]-~, (4.13) 

where 7,, denote the elements of F1, that is, T:' = [7,.J. Note that TT'<N is 
simply the Nth column of T9:' and <NtT9~' is the Nth row of Trl. 

Because Ti is a constant tridiagonal matrix, its inverse is known analytically. 
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Indeed, for a tridiagonal matrix, Tj = trid&z, b, c), the inverse elements are given 
by 

7 TS = (-da- BT-lSN-SPN , s > r, (4.14a) 

7 TS = (-aY- SN--rBs-1PN , s B r, (4.14b) 

where the determinant, 2~~ = Det[tridl(a, b, c)], is given by the solution of the 
difference equation 

52~~ = b9z-I - a&&, ; g,,=l, 9$=b, (4.15) 

which is 

3 = (lldK@ + P&')'+~ - @ - P>PY+'I, p = (b2 - 4ac)lj2. (4.16) 

To our knowledge Eq. (4.14) is an unpublished formula derived by H. Lomaxl; 
however, Fischer and Usmani [3] have published a similar formula for the 
trid(1, a, 1) which is diagonally similar to Tj . We also generalize a determinant 
relation used by Fischer and Usmani [3] to any constant tridiagonal: 

i 

O<k<l, 
Bl = L3k+19t--k-l - ac9k9z-k-2 go= 1, &=b, (4.17) 

grn = 0, m < 0. 

In our analysis (a, b, c) = (-1, crj , l), and henceforth gt will be evaluated 
with these particular elements. Consequently, because oj > 0, it follows from 
Eq. (4.15) with -ac = 1 that 

B& > 0, g’a > %2 > (4.18) 

and if 1 is an even integer it follows from Eq. (4.16) that 

By restricting N to be an even integer, we can use relations (4.14)-(4.19) to 
establish that the absolute value of any inverse element of Tj is bounded by unity. 
First, consider the lower diagonal elements of T;‘. From Eq. (4.14b) every such 
element is positive, and combining (4.14b) with (4.17) yields 

7,s = ~N-~~s-l/(%c+1~N-k-l + %~N-k-d, s < r. (4.20) 

1 Private communication. 
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Letk=r-l;askisarbitraryifO<k<N,then 

7 T.9 = ~N-*~s-l/(%~N-r + 9%@N--r-l) eww(-wN-r) =9ws. (4.21) 

Now if r is even, asp1 < gT because s < r and hence T~,~ < 1. If r is odd let 
k = N - r and from (4.20) 

i- - h.9s-1/(9N-r+l~~-l + 9N--T9T-2) G ~N-r~~-l/(~N-r+l~~-l). (4.22) rs - 

But r is odd and N is even; therefore by (4.18) and (4.19), S@N--r < gN++l and 
.SJP1 < grP1 , so T,, < 1. Thus, any lower diagonal element of T:’ is bounded 
by unity. Furthermore, because a = -I and c = 1, it is clear from Eqs. (4.14) 
that 1 Tag / = 1 78V I. Hence we have established that for any inverse element 

I 7,s I < 1. (4.23) 

Elements of By1 can now be bounded by using Eqs. (4.12) and (4.13). To evaluate 
p we use Eq. (4.14a) to evaluate T~-~,~, 7NN and find 

p = [l + (w@N--3PN) + Ml - 4(~N--1I~AP* 

But from (4.15), with I = N, 

(4.24) 

1 - uj = (-~N/~N-l)(l - @N-1PN) - G9?+2/9NN, 

and consequently, 

(4.25) 

p = 4/[1 + @N--3PN) + 3(9N-IPN) + 3PN-2PdI < 4. (4.26) 

If aj < 1, it is evident from Eq. (4.12) that the absolute value of each element 
of Bil is bounded by 5. For uj > 1, we need a bound on the elements of the 
matrix (1 - G~)(T:~&,,)(<J~‘). Evaluating elements of this matrix using (4.25) 
and (4.14), we obtain 

[(l - ~j)(T;‘r,)(r,“T~‘)],, = -(-l)N-’ (1 - + - +)(*)(%). 

(4.27) 

But if aj > 1, it follows directly from Eq. (4.15) that S@$ > S@iA1 > 0 and hence 
the absolute value of each factor of (4.27) is bounded by 1. Consequently, we find 
that the absolute value of each element of By1 is bounded by 5. 

With these bounds established for each element of By’, the convergence proof 
is easily completed. The norm of the discretization error vector, e = 2dt A-%, is 
bounded by 

II e /I2 G 2h II B-l II2 II E II2 , (4.28) 
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because A is orthogonally similar to B (see Eq. (4.6)). However, because B-l is 
the direct sum of the matrices B;‘; 

II B-l II2 = l~yll K1 II2 < 5N, (4.29) 

where the inequality follows from the definition of the natural norm [6] and because 
the largest element in absolute value of the N x N matrix Bil is <5 (see, e.g., 
[ll, p. 841). Thus, 

II e II2 < 1% II E II2 < lOt,(N . JY [Wt2) + O@x2)l, (4.30) 

and convergence is ensured if, for example, dx = 01 d t where N is an even integer. 
If N is an odd integer, the ratio of determinants Sl-JSZ found using (4.20) 

can become very large for small uj and we cannot provide a convergence proof 
by the method used in this section. The difficulty is perhaps related to the fact 
that the matrix trid,(-1, 0, 1) is singular when N is an odd integer. 

V. STAGGERED GRID DIFFERENCING OF THE CAUCHY-RIEMANN EQUATIONS 

Recently, Lomax and Martin [9] developed a fast, direct solver for the Cauchy- 
Riemann equations using staggered-grid difference operators. In a subsequent 
paper, the same authors utilized the direct solver in an iterative process for the 
numerical solution of the transonic small perturbation equations [lo] 

u, + uy = auu, 
24, - u, = 0 - (5.1) 

It appears that the staggered grid differencing of the Cauchy-Riemann equations 
has a number of potential applications, and consequently, in this section, we 
provide a formal convergence proof. 

Consider the Cauchy-Riemann equations, 

u, + v, = 0 
1 24, - v, = 0 ’ (5.2) 

on a rectangular domain, 0 < x < X~ and 0 < y < yY , with boundary conditions 
40, Y) =fi(r>, 4% Yf) =“fdx), 4x, 0) =.M x , ) and u(xI , v) =f4( JJ). In a depar- 
ture from the previous notation we use the same symbols u and v to denote a 
solution of both the differential and difference equations. 

A staggered grid is introduced so that values of v are displaced from values 
of u by -Ax/2 and Ay/2, and the difference equations are written at different 
spatial locations to maintain second-order accuracy as indicated in Fig. 1. Here 
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values of u are indicated with diamond symbols and indexed as j, k while values 
of v are indicated with circle symbols and indexed as j, k. In this notation the 
central difference analogs of (5.2) are 

%(u, v> = Gwl (%*k - %-1.k) + @u)-l (Vf.L - q&l) = 0, 

%A% 4 = (dy)-l (uf*k+l - %.le> - ww (Vj+1.C - Of.3 = 0, 
(5.3) 

which are second-order accurate. Following Lomax and Martin, we allow the 
indicestorangeasO,(j<J, l,<k,<K+l, l<j<J+l,andO<&<K 
so that 2J x Kis the number of unknown net-function elements to be determined 

l-4 
k+l 

$2 

1 v* L 
1-k I 

k 2 

4 "j,k 

1-I Tli- 

j-l 7 j FI 

FIG. 1. Staggered computational grid for centered differencing of the Cauchy-Riemann 
equations. 

for a given grid spacing, and x, = [J + (&)I Ax, yz = [K + ($)I dy. A “natural” 
ordering of points (see Section III) is used with the set of all (j, k) or u points 
ordered before the set of all (j, &) or v points. Thus, the (2X) x (2.K) matrix 
corresponding to Eq. (5.3) and its boundary conditions is 

A (3) = 

L 
L 

L 

--I I 
-I * . 

. . 
. I 

-I 

-- 

Z 
--I I 

. . . . . . 
-I I 

Lt 
Lt 

. 
. 

Lt 

"1 

U2 

UK 

"1 

"2 

"K (5.4) 
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where L is a J x J lower bidiagonal matrix 

L = LbJid (--/J, p), p = Ay/Ax. (5.5) 

The error equations in terms of the major subvectors are then given by 

We comment that A is an irreducible matrix [2, 41 with eigenvalues that are 
unknown to us; however, a matrix G is known such that GA is reduced and 
convergence can be proved for e, uncoupled from e, . Indeed, we simply employ 
the matrix that achieves the reduction used by Lomax and Martin to decouple 
the u and v vectors. 

Let 

G = [-,“‘l A ;]; (5.7) 

then GAe = AYT s AyGe, that is, 

[,“,, :;][eey,] = Ay [-A21fuE; A11’v] = Ay [;I, (5.8) 

where the upper, left-most block is zero because Azl and A,, commute and 

42 = --Awh, + A,,& - (5.9) 

Consequently, e, is uncoupled from e, and the convergence problem requires that 

e, = Ay&h -+ 0 (5.10) 

as the grid is refined. 
The matrix B,, has the symmetric-block tridiagonal structure 

with 

581/17/2-z 

B12= , 

E = 2I+ LLt, F = I + LLt. 

(5.11) 

(5.12) 



118 STEGER AND WARMING 

The matrix LLt is the J x J symmetric tridiagonal 

(5.13) 

with the known eigenvalues 

q(LL”) = 2$[1 + cos(2j?r/(2J + l))], j = 1, 2 ,..., J. 

Since B,, is symmetric, it is a normal matrix and consequently 

(5.14) 

where 

(5.15) 

and 

II B;i’ II2 = bin I QG~~>II-~, (5.16) 

q,(B,,) = 2@[1 + cos(2$r/(2J + l))] + 2[1 + cos(2kr/(2K + l))]. (5.17) 

The minimum eigenvalue occurs for j = J and k = K, and the limiting form for 
vanishing mesh spacing is 

UJK - p”h- ww2 + b- 4/2Yf)2, dx, dy -+ 0. (5.18) 

A bound on Eq. (5.15) is thus 

II e, II2 d AY II =, /12K5-/2)2 [tL2Wd2 + Gbhf121Y. (5.19) 

A bound on I] 7’u iI2 is now obtained from Eq. (5.8): 

II =u II2 G II A21 II2 II % II2 + II 41 II2 II 61, II2 * (5.20) 

If II A /I1 and II A /Im denote the maximum absolute column sum and the maximum 
absolute row sum (see, e.g., [2, 51) of a matrix, then I] A 11: < II A ]I1 I/ A Ilm, and 
consequently, 

II A21 11; G II A21 Ill II A21 I/m = 4, ii 4, II,” G /Ih ii1 II~,II~ = 4~2, (5.21) 

so 

II T’, II2 G a1 + PI II %z II2 3 (5.22) 
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where 

II em /I2 = ma41 eu II2 , II E, l12). 

If emaX is the largest component of E, in absolute value, then 

II %Z II2 < (JK>“2 Emax . 

Combining relations (5.19), (5.22), and (5.24), there follows 
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(5.23) 

(5.24) 

20 + d ~Y(YfWZ ilWx2) + wb2)1 
" e2, 'I2 c (Ax Lly)1/2(7r/2)2 [$(AX/Xf)2 + (dy/yJq G My (5.25) 

where M is a constant and dx = p dy where p is a fixed constant. 
If the elements of e, are all of the same order, then each element must approach 

zero because I/ e, 11: remains bounded by a constant as the grid is refined. Conver- 
gence would then be proved if further study of B$ should confirm that each 
element of e, is of the same order; but a better estimate of 117, /I2 is possible and is 
given in the following paragraph. 

Assume only that the derivatives of the exact solution are continuous to one 
higher order than required in the truncation error analysis, then consider blocks 
of the term AZ+, of r, (see Eq. (5.8)): 

(5.26) 
where the Taylor series (E,)~+~ = (E& + ~JJ(&,/+)~ + ... , has been used and 
“Ek is a vector whose elements are O(d.3) + O@y2). Except for the last block 
vector, A,, acts on E, to lower the order of the error. While previously we found 

II &EI l/2 < 2(JKY” Emax, (5.27) 

we now obtain 

II A,,: II2 G 2J1’2Gnax[1 + cw)11’2, (5.28) 

where crnax = O(dx2) + O(dy2) but otherwise represents a term that differs 
from Emax . The operator A,, works on e2, in the same fashion and without giving 
details; these bounds lead to an inequality of the form 

II e, II2 G W.W2, (5.29) 

where as earlier dy = p dx and where m is a constant. 
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To complete the analysis it must be shown that e, -+ 0. The simplest approach 
is to simply rework the analysis using the matrix 

(5.30) 

rather than the matrix G defined by Eq. (5.7). One then obtains the error relation 

BsIeu = 7,) (5.3 1) 
where 

41 = 4du - &A,, - (5.32) 

The convergence proof for Eq. (5.31) is simply a repetition of the previous analysis 
since B,, is symmetric and has eigenvalues identical to those of B12 . 

VI. CONCLUDING REMARKS 

While the inverse-matrix method of convergence is conceptually simple, estab- 
lishing bounds on the inverse of an arbitrary large matrix can be difficult. However, 
it is a general method that is applicable to any type of linear partial-differential 
equation. A major advantage of this approach is that the effects of boundary 
conditions which can alter convergence properties can be included in the analysis. 

In this paper, the inverse-matrix method has been used to prove the convergence 
of a (implicit) time- and space-centered differencing of the diffusion equation as 
well as a staggered grid differencing of the Cauchy-Riemann equations. 
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